

Advancing Science, Personalizing Medicine

Drug Discovery Platforms & Services

Bio-Bank & Personalized Medicine Primary cell models – phenotypic assays Research & Clinical Support Services

A joint venture with

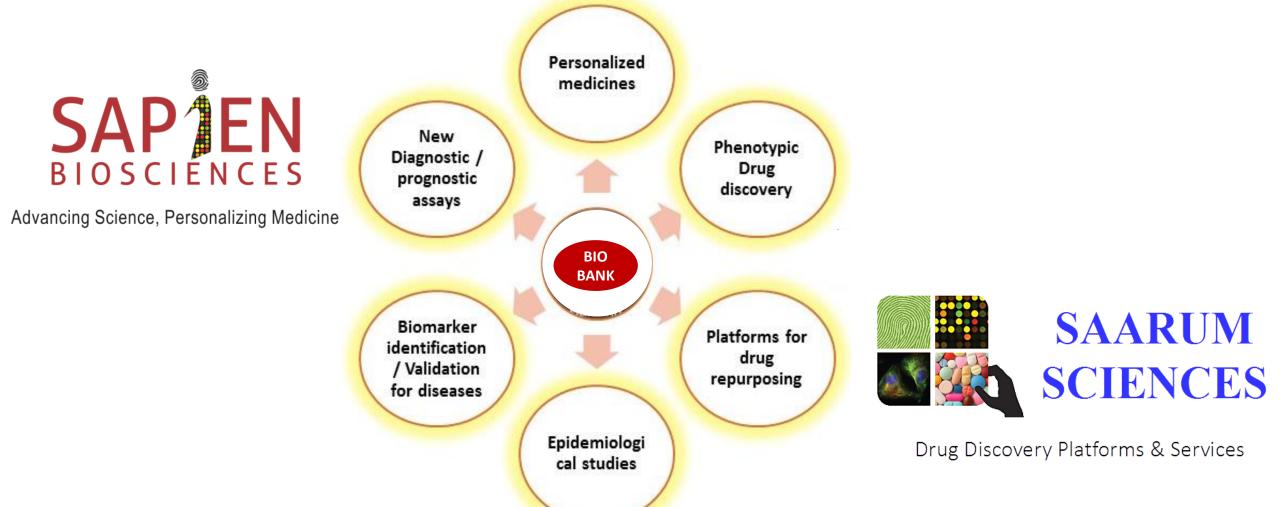
The 'Essence' of Saarum-Sapien

India's 1st commercial **Bio-bank** with systematic archive of ethically consented, anonymized patient samples & associated data

With a mandate to utilize these samples to revolutionize healthcare scenario by contributing to drug discovery, novel diagnostics, biomarkers, personalized medicine alike...

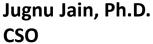

To ensure effective clinical outcome!!

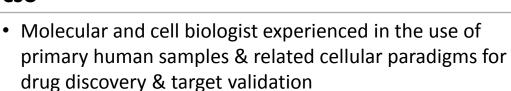
Sapien is not a vendor of samples.


Banked samples are used only for R&D

NOT FOR regenerative medicine or transplantation

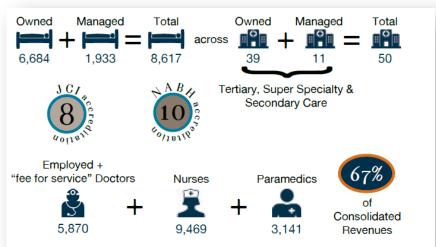
Our win-win set-up to revolutionize healthcare


Leadership team

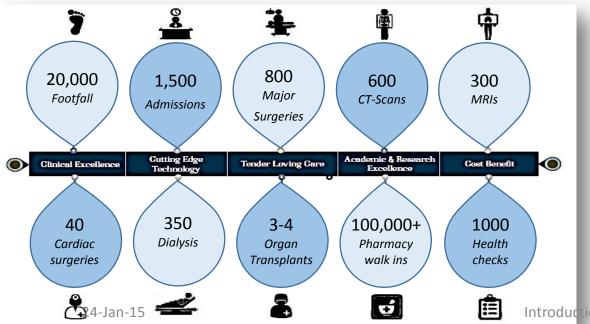


- Experienced business professional with over 16 yrs of global pharma experience in drug discovery, clinical research, portfolio mgt, licensing & bus. dev.
- Extensive experience in constructing & negotiating several collaboration & licensing deals and managing global alliances.
- Proven track record of leadership roles across several global drug discovery organizations & business models
- Participated in and managed teams that have developed and registered several NCEs (Oxycontin, Telaprevir etc)

- PhD in Genetics (Cambridge), post-doc in immunology (Harvard) with 25 years of post-PhD experience in autoimmune, inflammation & neuro-inflammation, cancer & diabetes therapeutic areas.
- Led biology teams on novel drug discovery targets & contributed to IND filing for many molecules.
- Extensive R&D leadership experience and proven track record of forging several successful R&D collaborations



Leadership team


- Dr Lakshmipathi Khandrika Senior Scientist Over 14 years of experience in Molecular Biology and ~8 years in Cancer Cell Biology (India, US, Europe).
- **Dr Mukesh Gandhari** Principal Scientist over 9 years of experience in drug discovery and biopharmaceuticals at Sun Pharmaceuticals, GVK Biosciences
- Dr. Prasanna Kumar Associate director Strategic marketing Clinical diagnostics Physician with about 7 years of ICU and ER experience, MBA + 4 Yrs of Pharma diagnostics experience in Elli Lilly, MedGenome.
- Dr. Rachna Goyal Associate Director Business and project management Trained cell Biologist with over 9 years of customer facing project management experience at Millipore, Vimta, Lonza
- **Dr. Soma Chatterjee** Associate director Biobank operations Trained cancer biologist with over 9 years of experience in ethical tissue sourcing and cell biology applications at Lonza
- Dr. Sumeda Dange Quality Assurance Trained Pharmacist with PhD in Electro-physiology. Decade
 of Industrial exposure in the field of Quality Assurance at Dr. Reddy's and Nektar Therapeutics

The Apollo set-up – Asia's largest hospital network

A typical weekday in the world of Apollo

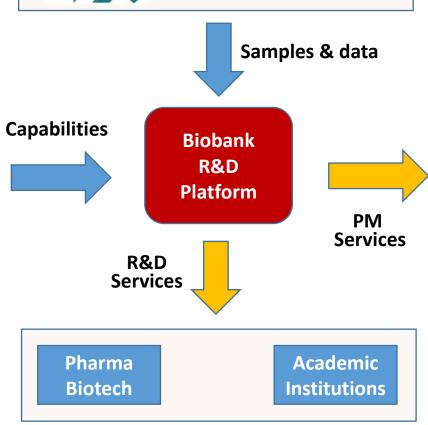
The Apollo advantage

FY14 at Apollo hospitals

325,000+ Admissions	3,000,000 Out-Patients	250,000+ Preventive Health Checks
10,000 Heart Surgeries	5,000+ Joint Replacements	13,000 Neuro Surgical Operations
500 Robotic Surgeries	1,000+ Kidney Transplants	375 Liver Transplants
120 Countries Medical Value Travel	150 Bone Marrow Transplants	150,000+ Radiotherapy Sessions 42,000+ Chemotherapy Sittings

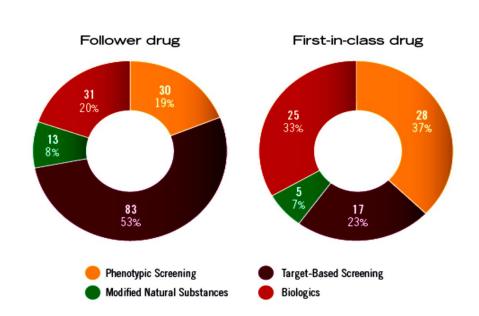
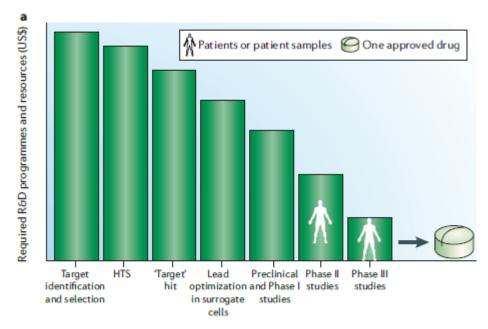
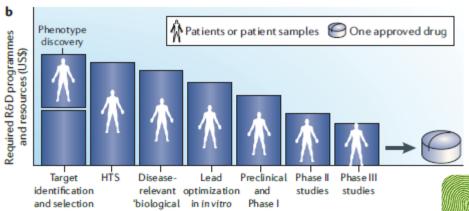
An abundant resource of diseased tissue samples and an honest will to use them for betterment of mankind

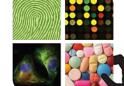

- contributing to diagnostics and drug development
- offering these new drugs / diagnostics for their patients


Introduction to Saarum-Sapien

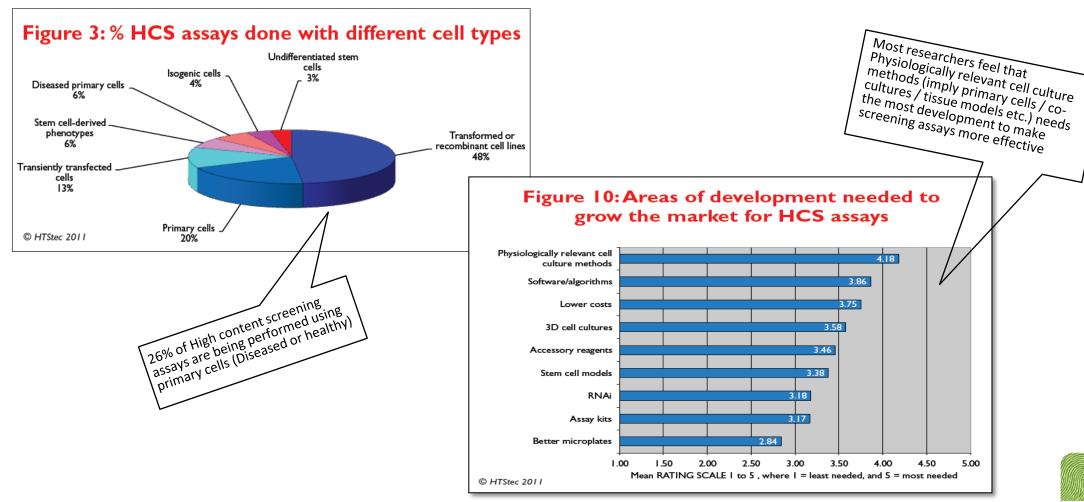
Our Networked Business Model

Impact of Biobank @ Drug discovery


Figure 1. The distribution of new drugs discovered between 1999 and 2008, according to the discovery strategy. Adapted from Swinney and Anthony 2011. The graph illustrates the number of NMEs in each category. Phenotypic screening was the most successful approach for first-in-class drugs, whereas target-based screening was the most successful for follower drugs.

Phenotypic screening using tissues / primary cells for a direct desired effect in a living system, possibly a broad range of effects simultaneously, independent of any defined target - increases the mechanistic understanding of the underlying biology and can reduce cost of discovery by 50-80% troduction to Saa um-Sapien



Grskovic et al., Nat Rev Drug Disc 2011

Physiological assay systems are need of the hour

Sample types banked at Sapien

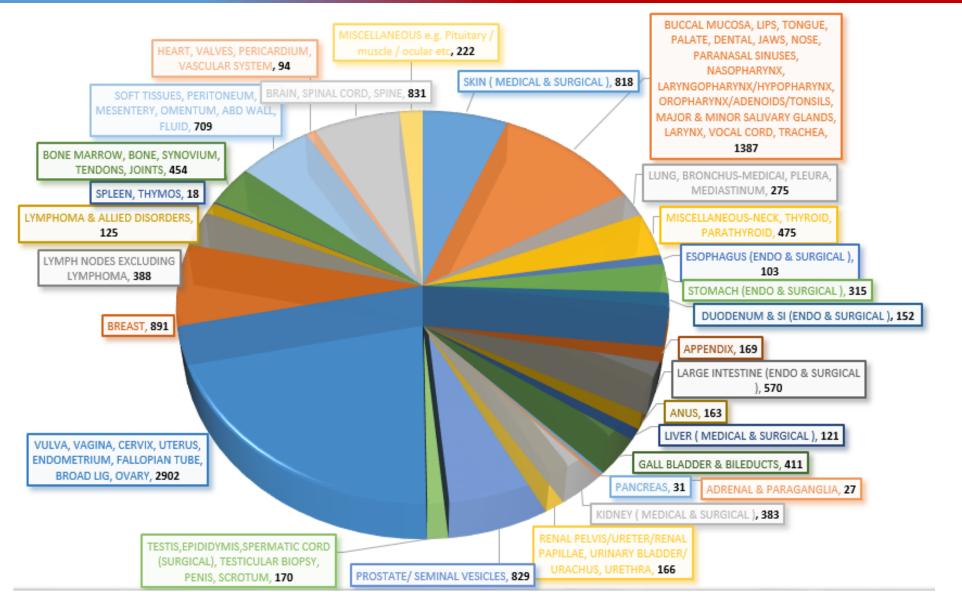
- Retrospective after anonymization.
 - FFPE blocks Tumor as well as adjacent non-tumor
- Prospective samples with informed consent
 - Fresh tumor and adjacent non-tumor samples
 - Hematological tumors: Cell types (PBMCs, T/B cells, platelets etc.)
 - Blood, Plasma, Serum
 - Saliva, Urine, BAL, Pleural fluid, synovial fluid etc.
 - Non-diseased specimens
- Health Check-up left over samples with informed consent
 - Serum / Blood / Urine With extremely rich associated data

~50,000 patients' blocks & data are being retrieved at Hyd. Expect ~500,000 samples in 5 years across Apollo network

Ethics of Bio-banking – Peace of mind for researchers

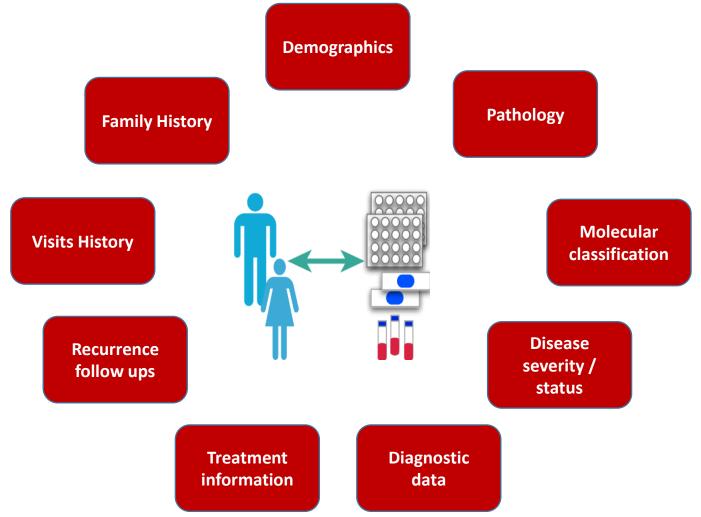
- Sapien works within ICMR and international guidelines, and follows high ethical norms with respect to transparency and patient privacy
- Sapien banks samples after Hospital EC approval & with Informed Consent
 - Informed consent form language follows ICMR guidelines
 - Retrospective samples (FFPE blocks) after anonymization
 - Prospective samples with ICF
- Sapien's Repository Ethics Committee (REC) also being constituted to review projects internally

Acces

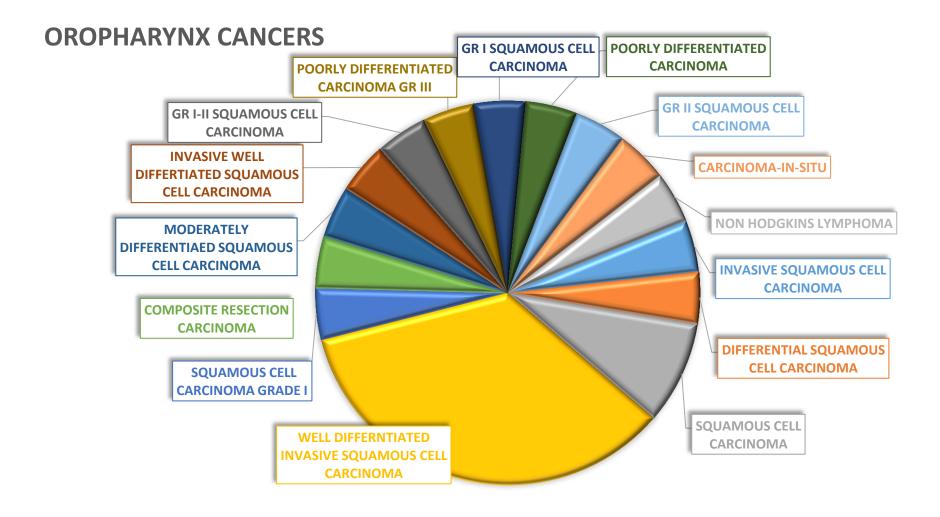

- Access require
- Many

ss to fresh tissues	***
ssibility across Apollo network - Possible to source many more sample types based on rement !!	
of these have been cultured to derive primary cancer cells e.g. breast / prostate/ Glioma	LIP

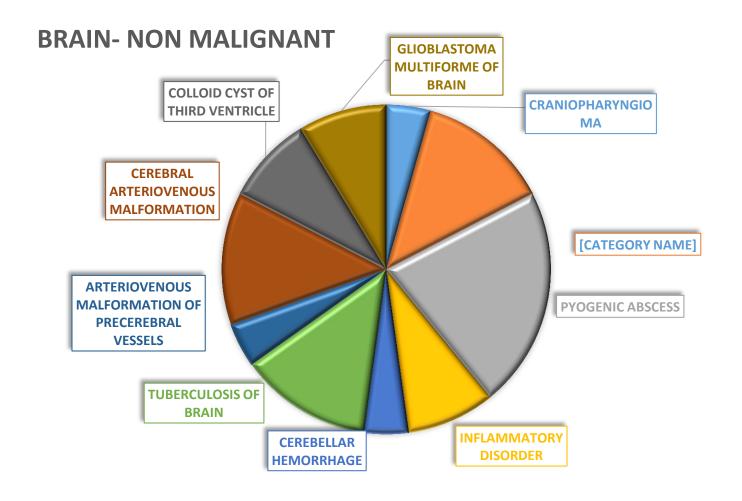
Fresh tis	sues @ Sap	ien - Currer	ntly banked / feasib	le to source
Abdominal cavity	Tonsil	Parathyroid	Malignant Lymph nodes	Surgical resection of Adenoids
Bladder	Glossectomy	Parotid	Laryngectomy	Surgical resection of the spleen
Brain	Thyroid	Pancreas	Uterus	Surgical resection of Tonsils
Breast	Testis	Ovary	Prostate	Fibroids from uterus
Kidney	Stomach	Omentum	Penis	Spinal Tumor
Colon	Spleen	Oesophagus	Normal Lymph nodes	Liposuction
Buccal Mucosa	Spinal Cord	Lung	Male normal breast reduction	Vitreous gel from eye
Gluteal Region	Rectum	Liver	Female normal Breast reduction	Synovial fluid
Cervix			Non malignant hysterectomy sample	Cord Blood

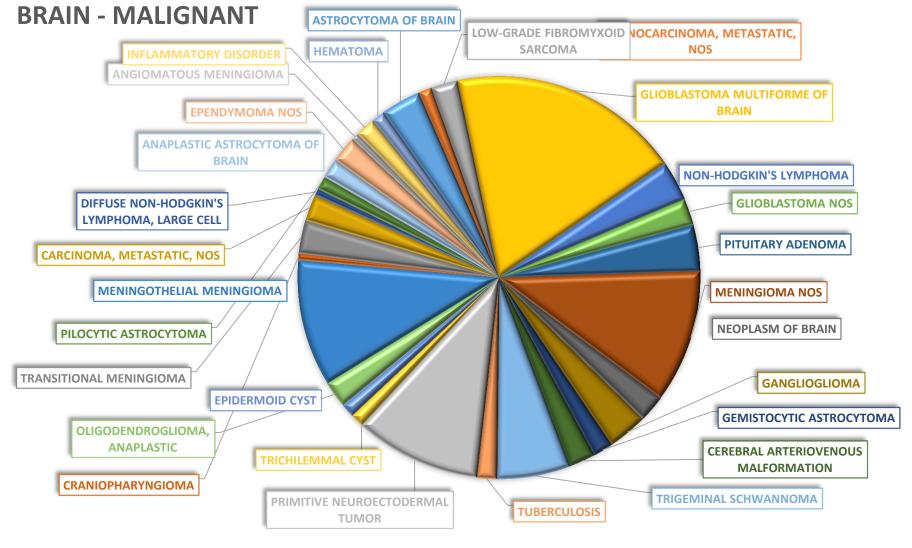

Current inventory of FFPE Blocks – source tissue wise

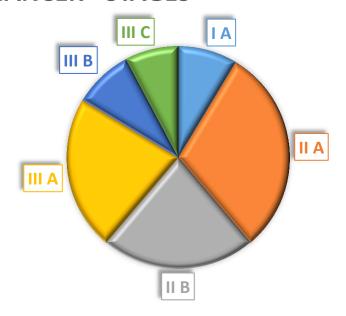
^{*} Data from single location - Apollo Hyderabad for 3 yrs. Sapien is working on systematically archiving samples from across Apollo network over several years

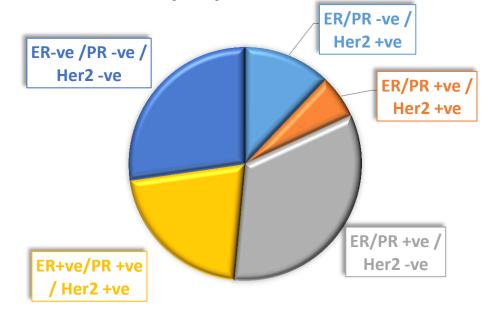

Associated information: holds promise for future

Any specific inclusion / exclusion criteria can be set as per need of study









- A

BREAST CANCER - STAGES

BREAST CANCER - ER/PR/Her2 STATUS*

^{*} Information only for a subset of the entire sample inventory

Sneak peek into the associated information*

Sample Information				
Serial No.	Date & method of diagnosis	Date of birth, Age at diagnosis, Se x	Registration / hospital #	Pathology block#/ Slide#
ABC001	14th July 2005, Iumpectomy	01-12-1960; 45/F	XYZ1234	5124/05

Pathological information				
Specimen type: MRM/BCS surgery with date	DCIS/IDC/ILC /Papillary carcinoma & Grade	TNM & stage, Metastasis at detection	ER/PR/Her-2 /Ki67/P53	Miscellened us:, FISH for Her-2/neu Oncotype Do score
BCS; 21st July 2005	IDC-3 with DCIS focus	pT2N2M0, Stage 2	70% P/45% P/ 1+/60%/N ot done	FISH: negative; ODx score: 18

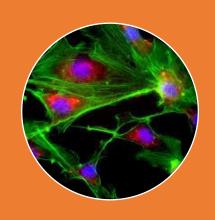
Chemotherapy information			
Neo- adjuvant/ Adjuvant, Drugs/Regim en and # of cycles	Dates of CT	Repeat CT with drugs and dates	
Adjuvant, FACx4 + Paclitaxe1x12 ;	September 2005-March 2006	Capecitabine x6 in January 2007-March 2007	

Radio	Radiotherapy information			
RT: Type, Dose and fractions	Dates of RT given	Miscelleneo us: Booster dose ?		
EBRT; 58 Gy/28 Fractions	April 2006- May 2006	10Gy/5 Fractions June 2006		

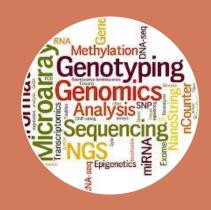
Hormonal therapy			
Neo- adjuvant/ Adjuvant & Drug name	Dose & dates of HT taken	If HT changed, new drug name & date	
Adjuvant, Tamoxifen 20mg/day	Started July 2006 for 5 yrs	Chaged to Al July 2011	

Recurrence information		
Date & site of recurrence	How was recurrence detected?	
December 2006, Liver and Bone	PET-CT and Bone scan	

Current Status			
Last F/up date	Alive: Date & With mets or not	Passed away: Cause of death & date	Miscelleneo us:
12th Sept 2013	Alive with liver & bone mets	N/A	On regular f/up, every 3 months; no more new mets as assessed by CxR, US(A+P), PET


Example of associated data for Breast cancer samples

* that can be collated and provided based on requirement.



R&D Infrastructure available to Saarum-Sapien

Flow cytometry
Cell sorting
Fluorescent microscopy
Laser scanning confocal

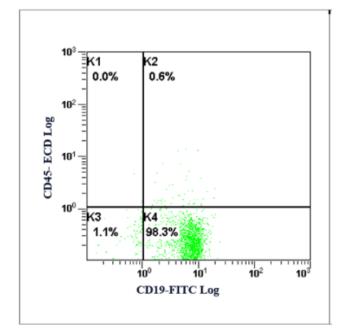
SNPs, SNP arrays
Sequencing
Bioinformatics including
pathway/ systems biology

Biacore
HPLC
GCMS
LC-MALDI-TOF
X-Ray diffraction
CD

FISH
ISH
ELISAs

In-house @ Saarum- Sapien or at strategic collaborators


Capabilities @ Sapien


Capability	Source
Cell enrichment using FACS, MACS	Fresh tissues / blood
Isolation and culture of primary cells	Fresh tissues / Blood
Primary cell immortalization	Primary human cells
Cell survival/ cytotoxicity assays/ Apoptosis	Fresh cells
Delineating cellular pathways of interest	Fresh cells using FACS, Western blot analysis
Target identification/ validation	IHC using FFPE slides Western blot analysis using flash frozen tissue
Phenotypic assays for cancer metastasis	Primary and immortalized cells isolated from patients
Assays for pro- and anti-inflammatory cytokines	PBMCs / other cell types isolated from healthy or diseased individuals
Reporter assays for target genes	Primary and immortalized cells from patients
Biochemical assays for specific molecules of interest	Serum, Plasma, Urine, and Saliva
DNA / RNA extraction, PCR, qPCR	Blood, Fresh frozen tissues, FFPE, Saliva

Some case studies

1. Cytotoxicity of Cytarabine on NHL patient samples

Patient with NHL: B cells enriched using MACS based negative selection from 20 ml blood

Concentration of Cytarabine (µM)	Apoptotic cells (%)
DMSO control	4.5
0.1	6.8
1	11.0
10	15.3

Cell populations before enrichment

Cell populations after enrichment

- Cells enriched using FACS
- Primary cultures of B cells exposed to various concentrations of Cytarabine
- Induction of apoptosis assessed using Annexin V/PI staining after 48 hours measured using FACS

2. Panel of Annotated primary Cancer Cultures

Objective: Evaluate drugs in cancer cells isolated from fresh cancer tissue to:

- Screen new chemical or biological entities for companies
- Generate Indian cancer patient response data by combining in vitro assays with outcomes
- Systematically screen Indian cancers against a 'pill box'
- Can repurpose drugs / combinations to benefit patients
- Conduct gene profiling of Indian cancers

ADVANTAGE!! mimics clinical variability in terms of:

- Genetic diversity
- Disease state based variations

Cancer Types being cultured presently*

Hematological

Brain

Breast

Colon

Endometrium

Oesophagus

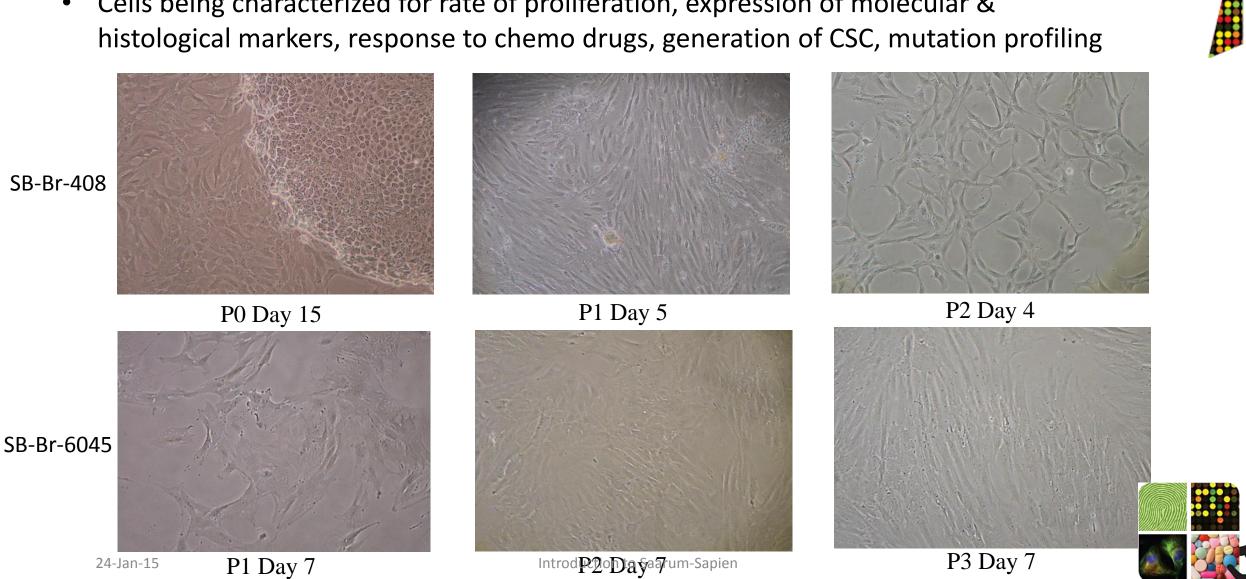
Prostate

Renal

* Acquisition and culturing ongo more sample types

e.g. Breast cancer panel

• ~27 breast cancers as well as normal breast tissue

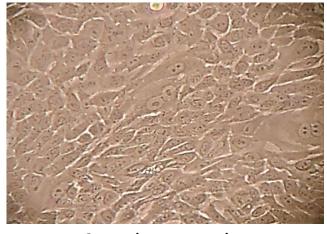

Sample ID	Age	Pathology	ER Status	PR Status	Her2 Status
SB-Br-146	73	Invasive Duct carcinoma Gr III (3+2+3)	-ve	-ve	02/03 +ve
SB-Br-175	63	Infiltrating lobular carcinoma, grade 1	+ve	-ve	-ve
SB-Br-178	37	Cystosarcoma phylloides	NA	NA	NA
SB-Br-193	69	Grade II, IDC	+ve	+ve	ND
SB-Br-286	46	Grade II, IDC	+ve	+ve	ND
SB-Br-287	72	Grade III, IDC	-ve	-ve	02/03 +ve
SB-Br-302	57	Grade III, IDC	+ve	-ve	01/03 -ve
SB-Br-320	53	Grade III, IDC	+ve	+ve	-ve
SB-Br-324		Grade II, IDC	+ve	+ve	ND
SB-Br-353	58	Adenocarcinoma	+ve	+ve	-ve
SB-Br-356	46	Grade II, IDC	+ve	+ve	Weak or moderate
SB-Br-357	40	Cystosarcoma phylloides	NA	NA	NA
SB-Br-359	39	Ductal carcinoma, NOS, grade – III	-ve	-ve	-ve
SB-Br-390	79	Grade I, IDC	+ve	+ve	-ve (01/03)
SB-Br-406	54	Grade II, IDC	+ve	+ve	-ve
SB-Br-407	47	Grade II, IDC	+ve	+ve	-ve
SB-Br-408	44	Grade III, IDC	+ve	-ve	03/03
SB-Br-434	56	Grade III, IDC	+ve	-ve	-ve
SB-Br-438	44	Grade III, IDC	-ve	-ve	-ve

e.g. Breast cancer panel (cont.)

Cells being characterized for rate of proliferation, expression of molecular &

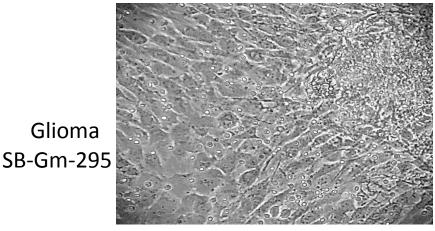
More e.g. Prostrate cancer panel, Glioma panel

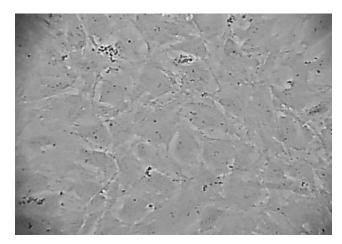
Sample ID	Age	Pathology
SB-Pr-472	52	ВРН
SB-Pr-501	58	PCa Grade II
SB-Pr-544	56	PCa Grade III
SB-Pr-559	54	PCa Grade I
SB-Pr-6086	76	PCa Grade
SB-Pr-6092	76	ВРН

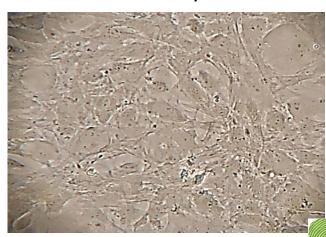

Sample ID	Age	Sex	Pathology
SB-Gm-038	58	M	Glioblastoma Multiforme Gr IV
SB-Gm-085	54	F	Glioblastoma Multiforme Gr IV
SB-Gm-144	38	F	High Grade Glioma
SB-Gm-295	36	F	Anaplastic Astrocytoma Gr III
SB-Gm-298	35	F	Glioblastoma Multiforme Gr IV
SB-Gm-305	58	M	Gemistocytic Astrocytoma Gr II
SB-Gm-474	49	M	Anaplastic Oligodendroglioma Gr III
SB-Gm-5972	44	F	Anaplastic Astrocytoma Gr III
SB-Gm-5980	56	M	Awaiting report
SB-Gm-6077	35	F	Awaiting report
SB-Gm-6129	32	M	Awaiting report
SB-Gm-8528	53	F	Awaiting report
SB-Gm-8530	40	F	Awaiting report

More e.g. Prostrate cancer panel, Glioma panel

Prostrate SB-Pr-544

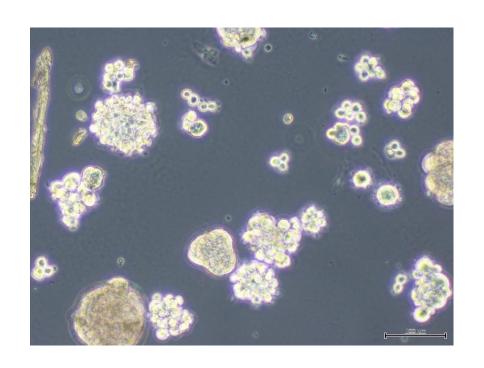

P0 explants 11 day

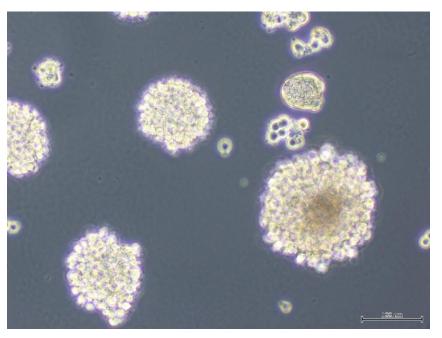

P1 5 day


P2 4 day

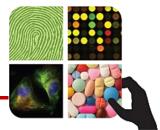
P0 explant 8 day

P2 5 day




P4 5 day

More e.g. Glioma panel – Neurospheres


SB-Gm-144 High grade Glioma Neurospheres

Glioma cells growing as Neurospheres

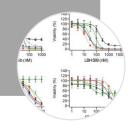
- Optimizing SOC treatment for IC50 readouts

Characterization plan for primary cell platform

In progress

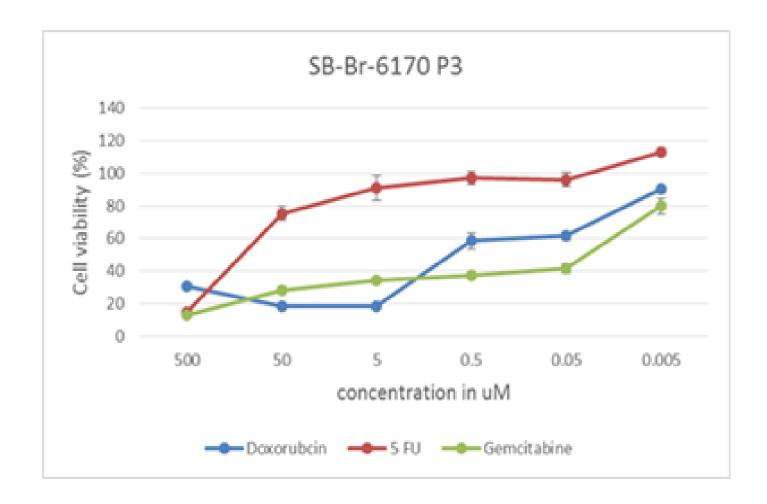
- Morphological evaluation at each passage
- Cell surface markers common and specific
- Including sterility and Mycoplasma testing

Morphology

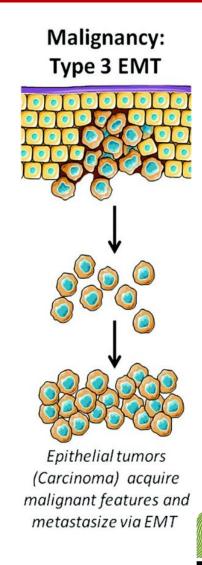

- Breast cancer BRCA1/2, EGFR, B-RAF, K-Ras, HER-2/Neu, TP53, C-Met, C-myc, PI-3K, MEK, FLT-3, PDGFR, TERT1,2
- Glioma IDH1, TP53, PTEN, CDK4, NF1, EGFR, PDGFR, TERT1,2

Mutation and Epigenetic profiling

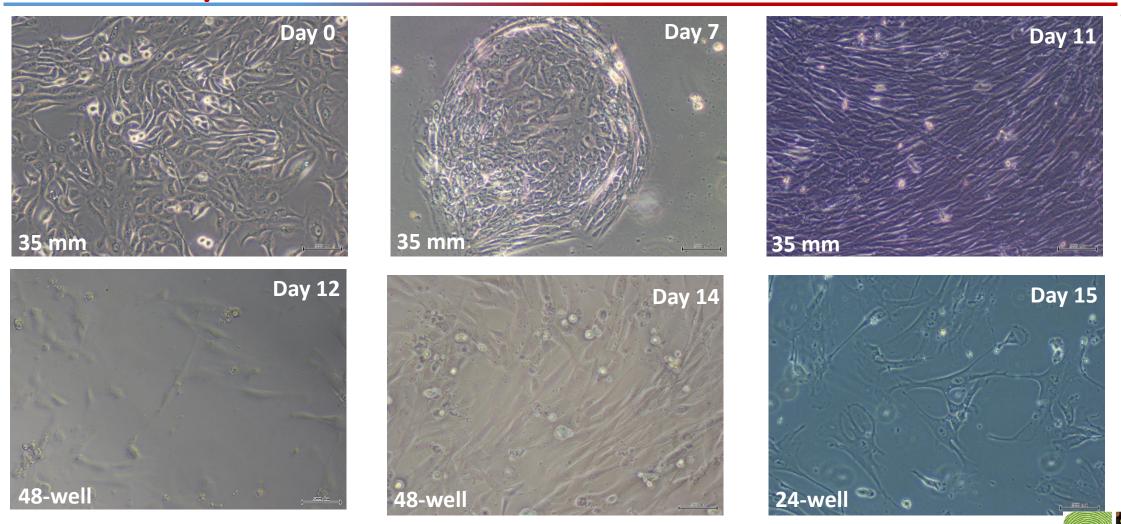
- Migration
- Invasion
- Colony formation
- Sphere formation
- Standard of care data for drug screening


Functional assays
Reference drug
data

Some early results on drug screening – with SOCs



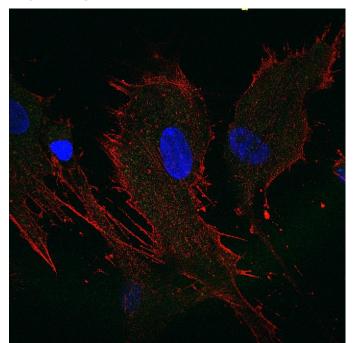
- Primary breast cancer cells derived from patient sample were treated with Standard of care compounds like Doxorubicin, 5FU and Gemcitabine.
- Can be used as a drug screening model for new molecules / combination therapies in different patient samples offering genetic diversity.



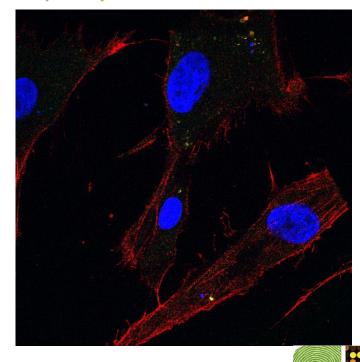
3. Regulated model of Epithelial Mesenchymal Transition

- Natural phenomenon occurring during early development. In cancer, EMT is involved in:
 - the initial steps of metastasis
 - Potentially involved in the formation of cancer stem cells
- Therapeutics targeting EMT will target the crucial step of metastasis and the formation of secondary sites of cancer.
- We have engineered regulated model of human EMT* currently being characterized for phenotypic screens thus allowing us to perform unbiased screens!
- The EMT model generated will be useful for
 - target discovery or validation,
 - ID & screening of new drugs/combinations
 - ID novel EMT/Metastasis biomarkers

Some early Evidence - Epithelial to Mesenchymal Transition



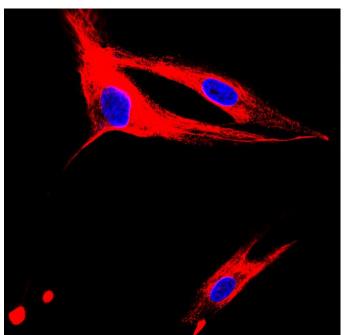
Epithelial to mesenchymal transition after transfection of primary normal breast epithelial cells with our provisional patented constructs.


Some early Evidence - Epithelial to Mesenchymal Transition

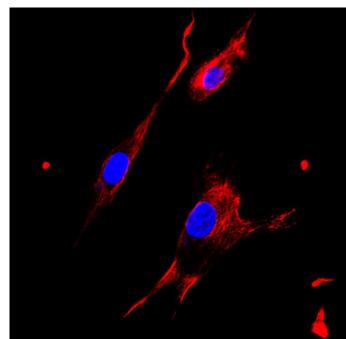
Epithelial markers	Mesenchymal markers
EPCAM	N-Cadherin
E-Cadherin	Vimentin
Cytokeratin 8/18	Smooth muscle actin

DAPI, CK 8/18 & Smooth Muscle Actin DAPI, CK 8/18 & Smooth Muscle Actin

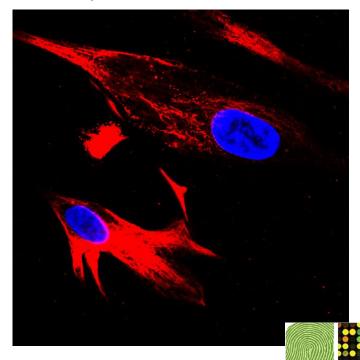
DAPI, CK 8/18 & Smooth Muscle Actin



At P# 1, induced cells show positive staining (+++) for mesenchymal markers and minimal (+) staining for epithelial marker


Some early Evidence - Epithelial to Mesenchymal Transition

Epithelial markers	Mesenchymal markers
EPCAM	N-Cadherin
E-Cadherin	Vimentin
Cytokeratin 8/18	Smooth muscle actin



DAPI, EPCAM Vimentin

DAPI, EPCAM Vimentin

At P# 2, induced cells show positive staining (+++) for mesenchymal markers and negative (-) staining for epithelial marker- Further characterization also using PCR for quantification is ongoing

Our capabilities in clinical diagnotics

- myPLATELETTM: India's 1st & only novel combination (genotype + phenotype) to identify non-responders to anti-platelet therapy and personalize/optimize treatment for such patients
 - Successfully launched at Apollo-Jubilee Hills, Apollo-Bhubaneswar, Apollo Bangalore
 - Roll-out underway across other Apollo sites nation-wide
 - ~180 test performed so far; 2 of every 3 patients (~66%) benefited from the test
- myCarDiO™: Genetic screening test for CVD, diabetes and obesity based on an assessment of a small panel of genes/SNPs correlated with risk of developing such diseases
 - Also incudes some metabolic/nutritional components related to these disease
 - Being rolled-out within the context of preventive health checks at Apollo nation-wide shortly
 - Enables development of a large database (~50,000 nos) of genotype-phenotype correlation data
- Collaborations: with a niche Indian & a US biotech, structured around validation of novel biomarker approaches for assessment of recurrence
 - Working on providing highly curated FFPE samples for validation of recurrence Biomarker(s)
- Other tests in the pipeline:
 - Assay for differential diagnosis of genetic disorders Eye panel, cardiac panel etc
 - 24-Jan-Gancer genomics assays germline & somatic mutations Saarum-Sapien

Collaboration	Collaboration Modes			
Objectives	Short-Term (Quick wins in service mode)	Mid/Long-Term (Shared-risk Mode)		
Screening opportunities	 Screening & profiling of Pharma NCE hits/leads in primary cells & co-cultures (2D, 3D etc.,) 	Generation of customized libraries of 'phenotypically active' molecules/fragments using primary cell-based models		
Translational Paradigms	Mechanistic profiling of hits/leads in primary cells &	Profiling leads/hits in Saarum's EMT model & derivatives		
	 co-cultures Derivation/optimization of primary tumors for mouse xenograft studies 	Co-development of other phenotypic models		
		Generation of CSCs/CTC paradigms for screening & profiling hits/leads		
Target/Biomarker ID & Validation	Biomarker/Target ID & validation in FFPE & Fresh	Development of novel/custom paradigms using primary cells for biomarker/Target ID & validation		
	samples	Collaboratively mine Sapien's sample sets for diagnostic markers		
Toxicology Platforms	 Safety screening of hits/leads in specific primary cell types (ES/MSCs, PBMCs etc.) 	Co-development & integration of ES/iPS-derived liver/cardiac/neuro tox paradigms into the NCE/NBE discovery workflow.		

Advancing Science, Personalizing Medicine

Drug Discovery Platforms & Services

Thank you

Rachna@sapienbio.com

+91-7032647554

Info@saarum.com 040-65570007